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a Muon Collider vs. Neutrino Factory cooling needs
e Muon Cooling scheme for the Muon Collider

e 6D cooling and emittance exchange

e Cooling lattices

e RF in magnetic field

e Open cavity lattice simulations

e Summary




@ Neutrino Factory:
o Might be feasible with no cooling.
e Some transverse cooling is cost-effective.
e Virtually no longitudinal cooling.
e Overall 6D emittance reduction of approximately one order in
magnitude.

@ Muon Collider:

e Strong fully 6D cooling.
e 6D emittance reduction factor of 10°.
e Proposed cooling schemes—next slide.
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6D Cooling Simulations for the Muon Collider

6D cooling and emittance
exchange
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6D Cooling Simulations for the Muon Collider
6D cooling and emittance exchange
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Cooling lattices




RFOFO ring / Guggenheim helix
modification: Open cavity lattice
Helical cooling channel (Muons, Inc.)
FOFO Snake (Y. Alexahin)
Quadrupole and dipole rings







@ Yellow: tilted magnetic coils
generating required bending
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RFOFO ring




6D Cooling Simulations for the Muon Collider

Cooling lattices

RFOFQ ring

@ Yellow: tilted magnetic coils
generating required bending

»»; .:h - and dispersion.
A ey /\ @ Purple: wedge absorbers for
m m cooling and emittance

exchange.

RFOFO ring



6D Cooling Simulations for the Muon Collider

Cooling lattices

RFOFQ ring

@ Yellow: tilted magnetic coils
generating required bending

1{.] - and dispersion.
@’ @ Purple: wedge absorbers for

cooling and emittance
exchange.

@ Red/Brown: RF cavities to
restore energy lost in the
absorber (longitudinal
direction only).
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6D Cooling Simulations for the Muon Collider

Cooling lattices

RFOFO ring and Guggenheim helix
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RFOFO-based Guggenheim helix



6D Cooling Simulations for the Muon Collider

Cooling lattices

RFOFO ring and Guggenheim helix
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RFOFO ring

@ Advantages: fast cooling,
compact design, RF reuse.

RFOFO-based Guggenheim helix



6D Cooling Simulations for the Muon Collider

Cooling lattices

RFOFO ring and Guggenheim helix
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RFOFO ring

@ Advantages: fast cooling,
compact design, RF reuse.

@ Challenges: absorber
overheating,
injection/extraction,

continuous operation. RFOFO-based Guggenheim helix




6D Cooling Simulations for the Muon Collider

Cooling lattices

Parameter comparison

| RFOFO | Guggenheim

Circumference, [m]
RF frequency, [MHZ]

RF gradient, [MV/m]
Maximum axial field, [T]
Pitch, [m]

Pitch angle, [deg]
Radius, [mm]

Coil tilt (wrt orbit), [deg]
Average momentum, [MeV/c]
Reference momentum, [MeV/c]
Absorber angle, [deg]
Absorber thickness on beam axis, [cm]

33.00
201.25
12.835

2.77
0.00
0.00
5252.113

3.04
220
201

110

27.13

33.00
201.25
12.621

2.80
3.00
5.22
5230.365

3.04
220
201

110

27.13



6D Cooling Simulations for the Muon Collider

Cooling lattices

Performance studies

Transmission 4 6D emittance
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@ 6D emittance is reduced by a factor of 448 in the RFOFO ring or

a factor of 360 in the Guggenheim helix (495 m) with no windows

@ or by a factor of 60 with windows in the RF cavities and
absorbers



6D Cooling Simulations for the Muon Collider

Cooling lattices

Phase space reduction
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All the solenoidal cooling lattices

@ helical cooling channel,
@ FOFO snake,
@ RFOFO ring and Guggenheim helix




6D Cooling Simulations for the Muon Collider

RF in magnetic field

Solenoidal lattices

All the solenoidal cooling lattices

@ helical cooling channel,

@ FOFO snake,

@ RFOFO ring and Guggenheim helix
have one important thing in common:

@ they use solenoids to focus and bend particles, generate
dispersion;
@ RF cavities operate in the strong magnetic field.
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Open cavity lattice




6D Cooling Simulations for the Muon Collider

Open cavity lattice simulations

Magnetic insulation

rf waveguide
Copper

Liguid nitrogen rf cavity

contalnm\tint HTS colls
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Axis m

- @ Open cavity lattice
@ Coils in the irises

@ Coils are tilted to generate
bending field
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6D Cooling Simulations for the Muon Collider

Open cavity lattice simulations

Open cavity and RFOFO parameters compared

Parameter | Unit | Open cavity | RFOFO
Number of cells 12 12
Circumference [m] 30.72 33.00

Radius [m] 4.889 5.252
RF frequency [MHZz] 201.25 201.25
RF gradient [MV/m] 16.075 12.835
Maximum axial field [T] 3.23 2.80
Reference momentum [MeV/c] 214 201
Coil tilt [deg] 4.90 3.04
Number of coils per cell 4 2
Current densities [A/mm?] | [63,45,-45,-63] | [95,-95]
Number of RF cavities 3 6
Length of each RF cavity [mm] 385 282.5
Absorber angle [deg] 90 110
Absorber vertical offset [em] 12.0 9.5
Absorber axial length [ecm] 24.00 27.13

Table: Parameters of the open cavity ring and the RFOFO ring.




Magnetic field, longtudinal component Magnetic field, vertical component

Magnetic field, radial component
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Figure: Longitudinal, vertical and radial components of the magnetic field.
Solid line—original RFOFO ring (or Guggenheim helix), dashed line—open
cavity lattice.




Closed orbits for various momenta Closed orbits for various momenta
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Figure: Closed orbit horizontal and vertical offsets along one cell of the
cooling channel (2560 mm) for various momenta from 150 MeV/c to 250
MeV/c.




6D Cooling Simulations for the Muon Collider

Open cavity lattice simulations

Tracking results
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Figure: Phase portraits in the (x — p,) (left) and (¢t — p;) (right) planes, decay
and stochastic processes on. The beam emittance is reduced until the
equivilibrium emittance is reached.



Longitudinal emittance Transverse emittance
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Figure: Performance of the open cavity lattice vs. the RFOFO lattice with
decay and stochastic processes. Solid line—open cavity lattice, dashed
line—RFOFO lattice.




6D emittance

Transmission
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Figure: Performance of the open cavity lattice vs. the RFOFO lattice with
decay and stochastic processes. Solid line—open cavity lattice, dashed

line—RFOFO lattice.




Transmission

Structure €L g €6D

[mm] | [mm] | [mm’] [%]

Initial 12 19 3000 100

Open cavity | 1.5 2.3 5.5 57
(15 turns)

RFOFO 1.7 25 7.2 56
(14 turns)

RFOFO 1.6 24 6.7 54
(15 turns)

Table: Parameters of the open cavity ring compared to the RFOFO ring.




6D Cooling Simulations for the Muon Collider

Sum mary

Summary

@ MC and NF cooling needs are summarized.

@ RFOFO and Guggenheim study results are presented.

@ Open cavity lattice simulation results are summarized and
compared to the RFOFO lattice.

P.S. | have some extra slides comparing tracking of the open cavity
ring with and without decay/stochastic processes on.



Extra slides




6D Cooling Simulations for the Muon Collider
Summary

Decay/stochastics on and off
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Figure: Performance of the open cavity lattice with decay and stochastic
processes. Solid line—decay/stochastics on, dashed
line—decay/stochastics off.

@ There is no equilibrium emittance when stochastic processes are
off, both transverse and longitudinal emittances shrink to zero [



6D Cooling Simulations for the Muon Collider
Summary

Decay/stochastics on and off
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Figure: Performance of the open cavity lattice with decay and stochastic
processes. Solid line—decay/stochastics on, dashed
line—decay/stochastics off.

@ With no stochastics the 6D emittance shrinks exponentially.
@ With no decay the transmission stabilizes after 3 turns at 81%[EEz)
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